Regulon location
Gradient LC

100μl of 10-19-9,10 → 1129 cpm

\[
\left(\frac{1129 \text{ cpm}}{0.1 \text{ ml}} \right) (25.5 \text{ ml}) = 2.88 \times 10^5 \text{ cpm} \Rightarrow \frac{2.88 \times 10^5}{\text{ ml}} = 8.73 \times 10^5 \text{ dpm}
\]

\[
\frac{8.73 \times 10^5 \text{ dpm}}{2.2 \times 10^6 \text{ dpm} / \text{ μCi}} = 3.967 \times 10^{-1} \text{ μCi}
\]

For JE-4
SA AFB = 1.875 μCi

\[
\therefore 2.116 \times 10^{-1} \text{ μM of AF5, or of adduct}
\]

M.W. adduct = \(\frac{478 \text{ μg}}{\text{μM}} \)

\[101.1 \text{ μg adduct}
10-19-9,10\]
Use of Preparative Column to Isolate Adduct

Purpose: to evaluate the potential of the preparative column for making large quantities of adduct.

Sample: 10-9-1 - this was a nod of JE-4 DNA processed the same way as the samples I treated with formic acid today.

Conditions: 0.70 x 8 cm Porasil B RP eluted from 10 to 80% MeOH in 40 min at 30 ml/min and at room temperature.

- The sample was loaded (in 10% MeOH) through the Waters 1000 psi pump. It was followed with 10-15 min of 10% MeOH
- The gradient was started immediately (probably slow) it have eluted first without 10% MeOH

fractions 9 and 10 contained the adduct.

10/35 = 4 volume of sample = 10-19-9, 10 = 25.5 ml
100 μl = 11,218.3/11,294/10