100 μl 12-7-1 (DNA) - just add scintillant and shake.

7,151 cp/4 min → 1787.75 cpm

from page 55; thus represented 10% of counts in the entire 12-7-5 sample ⇒ 17877.5 counts/...

⇒ 12-7-5 originally had 17,877.5 cpm

final volume before HPLC: 5 ml ⇒ 3575.5 cpm/ml

⇒ 321.8 cpm per 0.09 ml NOTE: the hydrolysate gave 2168 cpm (on facing page) for 90 μl!

restoke & count sample: 8345 cpm

12-17-76

6. Sample: 12-17-4 P ADDUCT

20 ml of 12-15-1
fraction volume: 17.0 ml
radioactivity: 14196 ⇒ 2.01 x 10^6 cpm TOTAL
14117

12-21-76

7. Sample: 12-21-5

11.6 ml onto column + 4.4 ml rinse from 12-15-1
fraction volume: 17.0 ml
8540 counts/4 min / 30 μl \{ 2.12 x 10^4 cpm/ml \} \Rightarrow 1.212 x 10^6 \text{ counts TOTAL}
12-20-76 Determination of the % of Radioactivity in Hydrolysate Attributable to Adduct

Sample: 12-7-5 (it is in stoppered 15 ml fritube)
Sample is slightly opaque from DNA which hasn't ever been spun down

Count 90 µL: \[
\frac{8629}{4} \rightarrow 2168 \text{ cpm}
\]

Sample 12-20-1P = injection into HPLC of 90 µL; The adduct peak was collected in a 2.0 ml volumetric and diluted to volume with ~0.3 ml of H2O.
- Count 2 1/2 ml portions

\[
\begin{align*}
\text{sample a:} & \quad 427 \text{ cpm} \\
\text{sample b:} & \quad 419 \text{ cpm}
\end{align*}
\]

These figures should be \( \frac{4}{5} \) of 2168 = 542 cpm

\[
\begin{align*}
\frac{427}{542} & = 0.79 \\
\frac{419}{542} & = 0.77
\end{align*}
\]

\[
\begin{align*}
\text{So, only } \approx 80\% \text{ of the radioactivity put onto column comes from the adduct.}
\end{align*}
\]

Sample 12-20-2P = duplicate
do much! -recount-

0.5 µL: 735 cpm \( \rightarrow \) 721.6